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The parameters of the final rotation of a satellite with respect to its position of stable 

equilibrium are chosen as variables convenient for estimating the potential energy of the 
perturbing forces. It is shown that the perturbing forces and deviations of the satellite 

satisfy inequalities (3.4) and (3.6). These inequalities constitute the conditions of 

(A, A, to, T)- stability fl] of the satellite’s equilibrium. 

1. Let us assume that the center of mass of a satellite moves as a material point along 
a Keplerian circular orbit and let us introduce the right-handed rectangular coordinate 

systems OZQ,Z, and Ow~ys. We direct the axes of the first of these systems along the 
principal central axes 01 inertia of the satellite. The second system is the orbital system 
(~1 lies along the velocity, us along the normal to the orbital plane, y, along the radius 

vector). 

The potential energy of the gravitational and inertial forces acting on the satellite is 

given by the expression [33 

w = iaa,? i-&s’ + Gas? + dcm’, ail = coa WJ (i -1) 

u = 1/sd (A, - AI), b = ‘/, 3(A, - A,), c = “/, co’ (Aa - A,), d = a/, CD* (A, - A,) 

in the orbital coordinate system. Here 0 is the Keplerian orbital angular velocity and 
Ai are the principal central moments of inertia of the satellite. The coefficients a, b, 

c, d are related to each other by the self-evident equations 

d=3b=c+3a (1.2) 

The relative motions of the satellite in the orbital coordinate system have the energy 
integral H, 

H = T + W = h, 2T = A& + A,p,= + A#*’ (1.3) 

Here T is the kinetic energy of the relative motions and pa are the projections of the 

relative angular velocity of the satellite onto the axes z~. 
The table of cosines qJ expressed in terms of the Rodrigues-Hamilton parameters &,, 

& (1 = 1, 2, 3) can be written out in the following form : 

Ag ,";,a - Ig - A,2 2 &, + q,, 

a 

It1 2 &A + kM 

YS 2 (1LoJ.a + &) ha - kg + A,2 - h,a 2(-wl+wa) 

V8 2 (-& + %J 2 (A&l+ J.&s) &a-w - Jg+ Is' 

IQ = cos 111 x, J+ = y{ sin Ifa x (f = 1, 2, 3), pa + rps + Y*’ = 1 
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Here Y4 are the cosines of the angles between the final-rotation axis and the coordi- 
nate axes (which are equal in the system OZ~Z,Z, and Oyry,ua) ; X is the final-rotation 
angle. In these variables we have 

w= sin*x F, F = I(b + d) yoayar + cyZY? + aYlavA ts’ r/2 x + 

+ 2(4-b- c + d) PYaYr Cg r/IX i- (5 i- d) or’ i- CYsa + aYaa (1.4) 

Let us assume that A, > AI > A,. Then a, b, c, d > 0, and the satellite is in a sta- 
ble equilibrium position for zi = y(. 

2. Let us determine the minimum and maximum with respect to yi (pa + y," + 

+ y,a = 1) of the function W for a fixed value of x < ‘Ia n 

min W = sinax min P, max w = sins x max F (2.1) 

We propose to show that 

min P = min {a, c), max F = b + d (2.2) 
From (1.2) we obtain the inequality 

b-j-d-a-c> (2.3) 

Considering the values of the function F.for 

Yl = fi* Ya = Ys = 0 (19) (2.4) 

we find from (1.4) and (2.3) that 

mfn F ( min {a, c) < b -I- d < max F 

Let us consider the three cases 
(2.5) 

O- b--e+d=O, a-b-c-+d>O, a-b--c-l-d<0 (2.6) 

In the case (2.6.1) the first relation of (2.2) is self-evident, and (2.2.2) is a conse- 

quence of (2.5) and of the following relations valid under conditions (2.3) and (2.6.1) : 

F~b+d-(b+d-Au-c)y,~-(b+d-a-Ac)y8a+~(b+d-a-c)ys~~a- 
- k (Oya' + q,') < b + d - (b + d - a - c):(ys' + yC - yaV,'I < b -I- d 

(h = tgq x9 0 <A< 1) 

To prove (2.2) in the two remaining cases (2.6.2) and (2.6.3) we must consider the 
functions W, k’-, W+, P+ which differ from W and P by the coefficients a-, b-, c-, d- 
and a+, b+, c+, d+, respectively, where 

0 < c < a Q a+, 0 < b- < b < b+, 0 < c- < c 6 c+, 0 < d- < d < d+ (2.7) 

a* - b* - cf + d* = 0, b*+d*-a*-&>0 

Then, first, expressions (1.1). (1.4.1). (2.1) yield 

w-<w<W+, P<P<F+, minP&ninP, maxF<maxF+ (2.6) 

and second, in accordance with case (2.6.1). 

min @ = rnin{o*, ~4, max F* = bf + d* (2.Q) 

On the basis of relations (1.2) we can readily verify that conditions (2.7) are satisfled 
by the following values: 

in the case (2.6.2), (2.10) 

a- = 0, b- = 5, c- =I c, d- = - a + 5 + c, a+ = a, b+ = b, c* = a - b + d, dt = d 

in the case (2.6.3), (2.11) 

a’ 3 a, b- = a - c + d, c- = c, d’ = d, a+ = b + c - d, b+ = b, C+ - C, d+=d 
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Comparing (2.5) with (2.8.3), (2.8.4) after substituting (2.9) with values (2.10). 
(2.11) into them. we see that (2.2) are also valid in cases (2.6.2), (2.6.3). 

Thus, (2.2) has been proved completely. 

We note that min F and max F do not depend on X. Hence. (2.1) implies that the 

minimum and maximum of x under the conditions 

W = h, p* + Ysa + VP = 1 

can be determined from the relations 

min sin2 x 3 h / (b + d), max sina x = sin’ x*(h) = h j min (a,~) (2.12) 

and are attained for values (2.4). 
Let us rewrite (2.12.2). (2.1) with allowance for (1.1.2). (2.2.2) as 

XlliIlW= ‘/a 0’ Silla X mitt {(As - Al), 3 (Al - As)) 
max W = 20’ (As - As) sid x 

max sina x = sina_%* (h) = 2ho-l/ min {(A, - AI), 3 (Al - A,)} 
(2.13) 

3. We infer from (1.3). (‘2.13.3) that if the energy of the satellite does not exceed 
h, then the angle of its deviation from the equilibrium position y = yi does not exceed 

X* (h).This result agrees with the estimates of the libration domains obtained directly in 
terms of the direction cosines in [2]. 

In other words, the equilibrium position zt I Vi.of the satellite is (A, A, to, oo)-stable 

p] if we take 
H<% x<A (A > x+ (A)) 

as our domains (A) and (A) . 

Let us suppose that the satellite is acted on by perturbing potential moments with the 
potential energy 10. Under appropriate assumptions those moments can include the gyro- 
static moments of masses rotating inside the satellite, the aerodynamic moments, the 

reactive moments due to the reactions of the air jets escaping from the satelite as a 

result of imperfect pressurization. the moments due to nonsphericfty of the gravitational 
field in the case of an equatorial satellite, and other moments. 

If the sum of all such perturbing moments is not larger than some positive number M 
in absolute value, then, clearly, 

IWIGXM (3.1) 

The equilibrium is (1, A, to, oc)-stable if D] 

maxth) V < min&, V = Ii + w = const (3.2) 

where [A] is the boundary of the domain (A). 

If as our domains (A) and (A) we take 

H<L H<A (3.3) 

then, by virtue of (2.13.3) and (3.1). 

maxCa) V ( k -I- Mx* (A), minIAl V > A - Mx+ (A) 

and inequality (3.2) is fulfllled for 

(A - a) 1 (x* (A) + X+ (A)) > M (3.4) 

If the domains (A.) and (A) are defined in some other way, then the numbers A0 and A0 

must be substituted for A and A in (3.4). 

Lo = rnaxCx) H, A0 = minI,lH 

let us consider the practically interesting case where the domains (li) and (A) are 
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defined by the inequalities 

Pl' + Pr’ + P,’ < &(‘) 9 X ( A(‘); PI’ + pf + p,’ ( o’A(‘), x ( A(s) (3.5) 
In this case we infer from (2.13) and (3.1) that 

maxtA) V ( l/s @*A, A(,(‘) + 209 (A, - A3 sin* A@) + MA@) 

kn[,jV > ‘/SW’ min {Ad(‘), (A, - AI) sins A(*), 3 (A1 - A,) siha A@)) _ MA(~) 

and condition (3.2) becomes 

l/s osmin (Ad(‘), (A, - AI) sin*A@), 3 (Al - A,) &*A(‘)) - l/s o*A,~L(~) - 

- 20’ (A, - A ,) sin%@) > (A(s) + h(s)) M (3.6) 

For comparison let us consider the case of nonpotential perturbing moments not exceed- 

ing M in absolute value. For example, let these be perturbations due to ellipticity of the 
orbit. Then, by virtue of the self-evident relation 

do / at < M (PI= + pz= + P&” Q M W 1 A.)% 

the equilibrium position under consideration is (A, A, to, T)-stable with domains (Q and 
(A) of the form (3.3). (3.5). respectively, under the conditions 

M(T--to)< JQX(,‘A-- JQ) 
V&I [@in {AsA( (At - Aa) sin’ A@), 3 (Al - As) sin’ A(29)“a - 

- (.4zA(f) + 4 (At - As) sina X@))‘“] > M (T -toI (3.7) 

For example, let AI = 4xiW” Z.CY~, A, = 6 XiWO E.c.u*, A, = 3xi@O 8.~9, o = 
= 0.001 SW-l, k(l) = k(r) t 0, A(‘) = 00, A@) = 0.1. Then the equilibrium position is 

(A, A, tp, m)- stable by virtue of (3.6) if the potential perturbing moments do not exceed 
1000 @cm’.sec* in absolute value. For this value of the nonpotential perturbing moments 

condition (3.7. ‘2) guarantees stability in the interval 2’ - to < 2450 set only. During 
this time the center of mass of tht? satellite traveses less than one-half of its orbit. 

The author is grateful to V. V. Rumiantsev for his comments and useful suggestions. 
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