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The parameters of the final rotation of a satellite with respect to its position of stable
equilibrium are chosen as variables convenient for estimating the potential energy of the
perturbing forces, It is shown that the perturbing forces and deviations of the satellite
satisfy inequalities (3, 4) and (3.6). These inequalities constitute the conditions of

(A, A, t5, T)- stability [1] of the satellite's equilibrium,

1, Let us assume that the center of mass of a satellite moves as a material point along
a Keplerian circular orbit and let us introduce the right-handed rectangular coordinate
systems OnizyTy and Opiyays. We direct the axes of the first of these systems along the
principal central axes ot inertia of the satellite, The second system is the orbital system
(¥1 lies along the velocity, y, along the normal to the orbital plane, y, along the radius
vector),

The potential energy of the gravitational and inertial forces acting on the satellite is
given by the expression [3]

W = aom?® +bayy® + can® + dag?, ag; = cos y;) (1.1)

a =10 (A3 — A1), b = Yy a¥4; — 4,), ¢ = %y 0F (41 — A,), d =3/, @3 (43 — 4y)
in the orbital coordinate system, Here @ is the Keplerian orbital angular velocity and
A4 are the principal central moments of inertia of the satellite, The coefficients g, b,
¢, d are related to each other by the self-evident equations

d=3b=c+ 3a 1.2)
The relative motions of the satellite in the orbital coordinate system have the energy
mtegral H, H=T+ W= R, 9T = AlPl’ + A,p.’ + A‘p.i (1.3)

Here T is the kinetic energy of the relative motions and pg are the projections of the
relative angular velocity of the satellite onto the axes z;.

The table of cosines ayy expressed in terms of the Rodrigues-Hamilton parameters A,
Ay (1 =1, 2, 3) can be written out in the following form:

z Z2 Ty
n A+ M — AP — Ay 2 (—Aohsy + MAy) 2 (Mghy + Mady)
Ys 2 (hohs + Mhy) AP — M2 A2 — A 2 (—Aghr + Aghy)
Vs 2 (—hhg + Mdy) 2 (Ah1 + Ashy) A — M — A0 + At

Ay =cos'yy, A= ysinl,y (=1, 2, 3), n+ v+t =
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Here y; are the cosines of the angles between the final-rotation axis and the coordi-
nate axes (which are equal in the system Oz zyzy and Opiysya) ; % is the final-rotation
angle, In these variables we have

W = sindy F, F=[(b+ d v + eva™n® + anPe?l 18 Yo ¥
+ 2(a —b—c+ d) pnavs tg aX + (b + &) 1P + v’ + avy’ (1.4)

Let us assume that As > A; > A,.Then a, b, ¢, d> 0, and the satellite is in a sta-

ble equilibrium position for z5 = y;.

2, Let us determine the minimum and maximum with respect to y; (v1? + v4* -+
+ 7,2 = 1) of the function W for a fixed value of ¥ <Yy =n
min W = sin?y min F, max W = sin? y max F (2.1)
We propose to show that

min F = min {a, c), max F = b+ 4 (2.2)
From (1. 2) we obtain the inequality
b+d—a—c> (2.3)
Considering the values of the functon F. for
n==%1, v=vw=0 (2.4)
we find from (1. 4) and (2, 3) that
min F  min {a, ¢} <{b + d < max F (2.5)

Let us consider the three cases
a—b—c+d=0, a—b—-c+d>0 a—b—c+dL0 (2.6)
In the case (2,6, 1) the first relation of (2, 2) is self-evident, and (2.2, 2) is a conse=-
quence of (2, 5) and of the following relations valid under conditions (2. 3) and (2,6,1):

FP=b4d—(bt+d—2rs—c)p2 —(b+d—a—r)y? + A(b+ d—a—c)ydyy?—
—Aant+ e ) Kb+ d—(b+d—a—chn + 0 —n')<b+d
A=tgt, 1 0 <AL Y)

To prove (2, 2) in the two remaining cases (2,6, 2) and (2, 6, 3) we must consider the
functions W, P-, W*, P* which differ from W and P by the coefficients a~, b, ¢~, d~
and e}, b*, c*, d*, respectively, where

- 0L h b, 0LerKeger, 0<dgdgdr (2
o0<e <a<a?t—btf—ci§-dt=0, bE 4 dt —at —cE>0

Then, first, expressions (1, 1), (1, 4,1),(2.1) yield
W-LWW, FFFF, minF »unin 7, max F < max F* (2.8)
and second, in accordance with case (2,6.1),
min F£ = min {a¥, 3}, max Ff = pE 4 4F (2.9)

On the basis of relations (1. 2) we can readily verify that conditions (2, 7) are satisfied
by the following values:

in the case (2,6,2), (2.10)
e~=a, b =bec=¢,d =—a+btecat=abt=0bc*=a—b+ dd =
in the case (2, 6. 3), (2.11)

ae-=a, b-=a—c+d cc=c¢ d-=d a*t=bt+c—d, bt =0b, ct=¢ d*=4d
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Comparing (2. 5) with (2, 8, 3),(2. 8.4) after substituting (2, 9) with values (2, 10),
(2.11) into them, we see that (2,2) are also valid in cases (2,6, 2), (2, 6. 3).
Thus, (2, 2) has been proved completely,
We note that min F and max F do not depend on X. Hence,(2,1) implies that the
minimum and maximum of ¥ under the conditions
W=nh w+wn'+v=1
can be determined from the relations
min sin® y = 4/ (b 4 d), max sin® y == sin® Y*(h) ==k / min {a,c} (2.12)
and are attained for values (2, 4).
Let us rewrite (2,12, 2),(2.1) with allowance for (1.1, 2),(2.2,2) as
min W = 1/, ©? sin? y min {(44 — 41), 3 (41 — 4,)}
max W = 2% (4, — A4,) sin? g (2.13)
max sin? ¥, = sin® x* (k) = 2he™!/ min {(4, — A1), 3 (41 — 4,)}

8, We infer from (1, 3), (2,13, 3) that if the energy of the satellite does not exceed
h, then the angle of its deviation from the equilibrium position z; = y; does not exceed
X* (k).This result agrees with the estimates of the libration domains obtained directly in
terms of the direction cosines in [2].

In other words, the equilibrium position z; == yy.of the satellite is (A, 4, %, oo)-stable
[1] 1f we take HSA 1<A A>x ()
as our domains (A) and (4) .

Let us suppose that the satellite is acted on by perturbing potential moments with the
potential energy w. Under appropriate assumptions those moments can include the gyro-
static moments of masses rotating inside the satellite, the aerodynamic moments, the
reactive moments due to the reactions of the air jets escaping from the satelite as a
result of imperfect pressurization, the moments due to nonsphericity of the gravitational
field in the case of an equatorial satellite, and other moments,

If the sum of all such perturbing moments is not larger than some positive number M
in absolute value, then, clearly, ol <y M (3.4)

The equilibrium is (A, 4, 5, oc)-stable if [1]
max,, V< ming, ¥, V= H + w= const (3.2)
where [4] is the boundary of the domain (4).
If as our domains (A) and (4) we take
HA HKA (3.3)
then, by virtue of (2,13, 3) and (3.1),
max VS A4+ My* (M), min[A] V>A — My* (4)
and inequality (3, 2) is fulfilled for
A—=N/ @+ MM>M (3.4)
If the domains (A) and (4) are defined in some other way, then the numbers A° and A°
must be substituted for A and A in (3. 4),
A° = maxg,, H, A°= mingH

Let us consider the practically interesting case where the domains (A) and (4) are
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defined by the inequalities
P+ p 4 Pt S 0, x KAD; pit 4 pd 4+ P € 0D, x <A (3.5)
In this case we infer from (2, 13) and (3. 1) that
maxg, V Q¥ 034y AV + 207 (43 — 4,) sin® AD L pA®
min; .,V > Y,0* min (4,40, (4, — 4)) sin? 4D, 3 (4; — 4,) sin® 4D} — MA®
and condition (3, 2) becomes
1, o'min {44V, (4, — A1) sin?A®, 3 (4; — 4,) sin?APy — 1, @34,AD —
— 20 (4, — 4,) sifA® > (AW 4 3 M (3.6)
For comparison let us consider the case of nonpotential perturbing moments not exceed-

ing M in absolute value, For example, let these be perturbations due to ellipticity of the
orbit, Then, by virtue of the self-evident relation

QH | dt < M (pid + p? + PN < M (2H | A

the equilibrium pesition under consideration is (A, 4, ¢,, T)-stable with domains (A} and
(4) of the form (3, 3), (3. 5), respectively, under the conditions

MT—~t)< VZA:(VA—VA)
Y A3 [(min {4s4D, (4, — A;) sin? AP, 3 (4; — Ay) sin* 4P} —
— (A 4 (4, — Ag) sin® AD) A1 S M (T —1to) 3.7)

For example, let Ay = 4 X101 z.ca¥, A, = 6 X102 z.cx3, Ay = 3X101° g.cu?, © =
= 0.001 sec—1 A = A = g, 4D = o0, 4D = 0.1. Then the equilibrium position is
(A, A, ty, oo)- stable by virtue of (3. 6) if the potential perturbing moments do not exceed
1000 g-cm®.sec* in absolute value, For this value of the nonpotential perturbing moments
condition (3, 7. 2) guarantees stability in the interval T — ¢, 2450 sec only, During
this time the center of mass of the¢ satellite traveses less than one-half of its orbit,

The author is grateful to V, V, Rumiantsev for his comments and useful suggestions,
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